Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
C
CM2305 Group 17 Project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Ewan Crowle
CM2305 Group 17 Project
Commits
b6b2ae45
Commit
b6b2ae45
authored
3 months ago
by
Ewan Crowle
Browse files
Options
Downloads
Patches
Plain Diff
Updated to match main's final version
parent
1cb37e8f
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
Object_detection_picamera.py
+244
-0
244 additions, 0 deletions
Object_detection_picamera.py
core/add_product.py
+1
-1
1 addition, 1 deletion
core/add_product.py
core/add_user.py
+1
-1
1 addition, 1 deletion
core/add_user.py
local.sqlite
+0
-0
0 additions, 0 deletions
local.sqlite
with
246 additions
and
2 deletions
Object_detection_picamera.py
0 → 100644
+
244
−
0
View file @
b6b2ae45
######## Picamera Object Detection Using Tensorflow Classifier #########
#
# Author: Evan Juras
# Date: 4/15/18
# Description:
# This program uses a TensorFlow classifier to perform object detection.
# It loads the classifier uses it to perform object detection on a Picamera feed.
# It draws boxes and scores around the objects of interest in each frame from
# the Picamera. It also can be used with a webcam by adding "--usbcam"
# when executing this script from the terminal.
## Some of the code is copied from Google's example at
## https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
## and some is copied from Dat Tran's example at
## https://github.com/datitran/object_detector_app/blob/master/object_detection_app.py
## but I changed it to make it more understandable to me.
# Import packages
import
os
import
utils
import
cv2
import
numpy
as
np
from
picamera.array
import
PiRGBArray
from
picamera
import
PiCamera
import
tensorflow
as
tf
import
argparse
import
sys
# Set up camera constants
IM_WIDTH
=
1280
IM_HEIGHT
=
720
#IM_WIDTH = 640 Use smaller resolution for
#IM_HEIGHT = 480 slightly faster framerate
# Select camera type (if user enters --usbcam when calling this script,
# a USB webcam will be used)
camera_type
=
'
picamera
'
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'
--usbcam
'
,
help
=
'
Use a USB webcam instead of picamera
'
,
action
=
'
store_true
'
)
args
=
parser
.
parse_args
()
if
args
.
usbcam
:
camera_type
=
'
usb
'
# This is needed since the working directory is the object_detection folder.
sys
.
path
.
append
(
'
..
'
)
# Import utilites
from
utils
import
label_map_util
from
utils
import
visualization_utils
as
vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME
=
'
ssdlite_mobilenet_v2_coco_2018_05_09
'
# Grab path to current working directory
CWD_PATH
=
os
.
getcwd
()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT
=
os
.
path
.
join
(
CWD_PATH
,
MODEL_NAME
,
'
frozen_inference_graph.pb
'
)
# Path to label map file
PATH_TO_LABELS
=
os
.
path
.
join
(
CWD_PATH
,
'
data
'
,
'
mscoco_label_map.pbtxt
'
)
# Number of classes the object detector can identify
NUM_CLASSES
=
90
## Load the label map.
# Label maps map indices to category names, so that when the convolution
# network predicts `5`, we know that this corresponds to `airplane`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map
=
label_map_util
.
load_labelmap
(
PATH_TO_LABELS
)
categories
=
label_map_util
.
convert_label_map_to_categories
(
label_map
,
max_num_classes
=
NUM_CLASSES
,
use_display_name
=
True
)
category_index
=
label_map_util
.
create_category_index
(
categories
)
# Load the Tensorflow model into memory.
detection_graph
=
tf
.
Graph
()
with
detection_graph
.
as_default
():
od_graph_def
=
tf
.
GraphDef
()
with
tf
.
gfile
.
GFile
(
PATH_TO_CKPT
,
'
rb
'
)
as
fid
:
serialized_graph
=
fid
.
read
()
od_graph_def
.
ParseFromString
(
serialized_graph
)
tf
.
import_graph_def
(
od_graph_def
,
name
=
''
)
sess
=
tf
.
Session
(
graph
=
detection_graph
)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor
=
detection_graph
.
get_tensor_by_name
(
'
image_tensor:0
'
)
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes
=
detection_graph
.
get_tensor_by_name
(
'
detection_boxes:0
'
)
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores
=
detection_graph
.
get_tensor_by_name
(
'
detection_scores:0
'
)
detection_classes
=
detection_graph
.
get_tensor_by_name
(
'
detection_classes:0
'
)
# Number of objects detected
num_detections
=
detection_graph
.
get_tensor_by_name
(
'
num_detections:0
'
)
# Initialize frame rate calculation
frame_rate_calc
=
1
freq
=
cv2
.
getTickFrequency
()
font
=
cv2
.
FONT_HERSHEY_SIMPLEX
# Initialize camera and perform object detection.
# The camera has to be set up and used differently depending on if it's a
# Picamera or USB webcam.
# I know this is ugly, but I basically copy+pasted the code for the object
# detection loop twice, and made one work for Picamera and the other work
# for USB.
### Picamera ###
if
camera_type
==
'
picamera
'
:
# Initialize Picamera and grab reference to the raw capture
camera
=
PiCamera
()
camera
.
resolution
=
(
IM_WIDTH
,
IM_HEIGHT
)
camera
.
framerate
=
10
rawCapture
=
PiRGBArray
(
camera
,
size
=
(
IM_WIDTH
,
IM_HEIGHT
))
rawCapture
.
truncate
(
0
)
for
frame1
in
camera
.
capture_continuous
(
rawCapture
,
format
=
"
bgr
"
,
use_video_port
=
True
):
t1
=
cv2
.
getTickCount
()
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
frame
=
np
.
copy
(
frame1
.
array
)
frame
.
setflags
(
write
=
1
)
frame_rgb
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
frame_expanded
=
np
.
expand_dims
(
frame_rgb
,
axis
=
0
)
# Perform the actual detection by running the model with the image as input
(
boxes
,
scores
,
classes
,
num
)
=
sess
.
run
(
[
detection_boxes
,
detection_scores
,
detection_classes
,
num_detections
],
feed_dict
=
{
image_tensor
:
frame_expanded
})
# Draw the results of the detection (aka 'visulaize the results')
"""
Changes made to pull detected objects
"""
top_score
=
np
.
squeeze
(
scores
)[
0
]
top_class
=
int
(
np
.
squeeze
(
classes
)[
0
])
if
top_score
>
0.4
:
class_name
=
category_index
[
top_class
][
'
name
'
]
print
(
f
"
Detected:
{
class_name
}
(confidence:
{
top_score
:
.
2
f
}
)
"
)
with
open
(
"
/home/pi/detected_object.txt
"
,
"
w
"
)
as
f
:
f
.
write
(
class_name
)
camera
.
close
()
cv2
.
destroyAllWindows
()
break
vis_util
.
visualize_boxes_and_labels_on_image_array
(
frame
,
np
.
squeeze
(
boxes
),
np
.
squeeze
(
classes
).
astype
(
np
.
int32
),
np
.
squeeze
(
scores
),
category_index
,
use_normalized_coordinates
=
True
,
line_thickness
=
8
,
min_score_thresh
=
0.40
)
cv2
.
putText
(
frame
,
"
FPS: {0:.2f}
"
.
format
(
frame_rate_calc
),(
30
,
50
),
font
,
1
,(
255
,
255
,
0
),
2
,
cv2
.
LINE_AA
)
# All the results have been drawn on the frame, so it's time to display it.
cv2
.
imshow
(
'
Object detector
'
,
frame
)
t2
=
cv2
.
getTickCount
()
time1
=
(
t2
-
t1
)
/
freq
frame_rate_calc
=
1
/
time1
# Press 'q' to quit
if
cv2
.
waitKey
(
1
)
==
ord
(
'
q
'
):
break
rawCapture
.
truncate
(
0
)
# removed so that the camera is shut after detection
camera
.
close
()
### USB webcam ###
elif
camera_type
==
'
usb
'
:
# Initialize USB webcam feed
camera
=
cv2
.
VideoCapture
(
0
)
ret
=
camera
.
set
(
3
,
IM_WIDTH
)
ret
=
camera
.
set
(
4
,
IM_HEIGHT
)
while
(
True
):
t1
=
cv2
.
getTickCount
()
# Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
ret
,
frame
=
camera
.
read
()
frame_rgb
=
cv2
.
cvtColor
(
frame
,
cv2
.
COLOR_BGR2RGB
)
frame_expanded
=
np
.
expand_dims
(
frame_rgb
,
axis
=
0
)
# Perform the actual detection by running the model with the image as input
(
boxes
,
scores
,
classes
,
num
)
=
sess
.
run
(
[
detection_boxes
,
detection_scores
,
detection_classes
,
num_detections
],
feed_dict
=
{
image_tensor
:
frame_expanded
})
# Draw the results of the detection (aka 'visulaize the results')
vis_util
.
visualize_boxes_and_labels_on_image_array
(
frame
,
np
.
squeeze
(
boxes
),
np
.
squeeze
(
classes
).
astype
(
np
.
int32
),
np
.
squeeze
(
scores
),
category_index
,
use_normalized_coordinates
=
True
,
line_thickness
=
8
,
min_score_thresh
=
0.85
)
cv2
.
putText
(
frame
,
"
FPS: {0:.2f}
"
.
format
(
frame_rate_calc
),(
30
,
50
),
font
,
1
,(
255
,
255
,
0
),
2
,
cv2
.
LINE_AA
)
# All the results have been drawn on the frame, so it's time to display it.
cv2
.
imshow
(
'
Object detector
'
,
frame
)
t2
=
cv2
.
getTickCount
()
time1
=
(
t2
-
t1
)
/
freq
frame_rate_calc
=
1
/
time1
# Press 'q' to quit
if
cv2
.
waitKey
(
1
)
==
ord
(
'
q
'
):
break
camera
.
release
()
cv2
.
destroyAllWindows
()
This diff is collapsed.
Click to expand it.
core/add_product.py
+
1
−
1
View file @
b6b2ae45
...
...
@@ -2,7 +2,7 @@ from sqlalchemy import create_engine
from
sqlalchemy.orm
import
sessionmaker
from
models
import
Product
,
Base
DATABASE_URL
=
'
sqlite:///local.
db
'
DATABASE_URL
=
'
sqlite://
..
/local.
sqlite
'
engine
=
create_engine
(
DATABASE_URL
)
Session
=
sessionmaker
(
bind
=
engine
)
...
...
This diff is collapsed.
Click to expand it.
core/add_user.py
+
1
−
1
View file @
b6b2ae45
...
...
@@ -2,7 +2,7 @@ from sqlalchemy import create_engine
from
sqlalchemy.orm
import
sessionmaker
from
models
import
Customer
,
Base
,
ENGLISH_LANGUAGE
DATABASE_URL
=
'
sqlite:///local.
db
'
DATABASE_URL
=
'
sqlite://
..
/local.
sqlite
'
engine
=
create_engine
(
DATABASE_URL
)
Session
=
sessionmaker
(
bind
=
engine
)
...
...
This diff is collapsed.
Click to expand it.
local.sqlite
+
0
−
0
View file @
b6b2ae45
No preview for this file type
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment